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Two approaches to gas pressure profile prediction for bulge forming of AA5083 sheet under Quick Plastic
Forming (QPF) conditions at 450 �C were investigated. The first was based on an algorithm internal to
ABAQUS� wherein the gas pressure results from maintaining a constant effective target strain rate at the
dome pole. In the second, the nonlinear long wavelength stability analysis was combined with a single creep
mechanism material model that accounts for hardening/softening. A series of stability curves, which denote
combinations of strain and strain rate for unmitigated thinning and, ultimately, rupture of an AA5083 bar,
were computed. These are based on a parameter that characterizes an assumed geometric non-uniformity,
g. The associated uniaxial strains and strain rates were expressed in terms of von Mises effective strains and
strains rates, and pressure profiles were computed. An ancillary approach to variable strain rate path
prediction based on a thinning factor was used to suggest a suitable value of g in the stability analysis for a
reasonable thinning level at the end of forming. Key advantages and disadvantages of both approaches to
pressure profile prediction are examined relative to bulge forming time and thinning at a 50-mm dome
displacement.

Keywords deformation stability, finite element simulation, quick
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1. Introduction

In finite element (FE) simulations of high temperature gas
pressure forming, the gas pressure is often linearly ramped to a
constant value which is then held for all or part of the
simulation. Additional ramping to higher pressures is required
with complex die geometries. A little-explored alternative is the
prediction of a pressure profile based on variable strain rate
deformation computed from a stability criterion that determines
conditions for thinning (or necking) instability in the sheet.
Following this computed strain rate path (in theory) does not
preclude local thinning of the sheet. Common practice in FE
simulations is to adjust gas pressure profiles to maintain a
constant strain rate at certain regions of the deforming sheet.
For example, an algorithm is provided in the FE (implicit)
ABAQUS� code that adjusts the pressure profile to keep the
strain rate within a certain pre-specified range.

Much of the existing literature on gas pressure profile
prediction in high temperature sheet forming is focused either on

uniaxial, biaxial, or plane strain deformation. For example, the
work of Ren et al. (Ref 1), who experimentally determined an
instability parameter as a function of strain for different strain
rates in tensile tests of an Al-Li-Cu-Zr alloy under SPF
conditions, is of notable interest. This parameter was previously
extracted from Hart�s tensile stability criterion (Ref 2, 3) by
Caceres and Wilkinson (Ref 4) and Ash and Hamilton (Ref 5).
When the instability parameter exceeded zero, an exponential
increase in the neck growth rate was expected. Ren et al. (Ref 1)
used this to determine the combinations of strain rate vs. critical
strain (i.e., strain at which the instability parameter exceeded
zero for a certain strain rate). Subsequent application resulted in
the reduction of the uniaxial tensile testing time to failure from
35 to 13 min while maintaining the same elongation. Based on
the stability criterion of Hart (Ref 2) and a Ti-6Al-4V
constitutive model, Johnson et al. (Ref 6) generated a designed
variable strain rate deformation path. The largest average strain
rate corresponding to the instability criterion up to a strain of
(�1.5) in strain increments of (�0.02) was computed. Uniaxial
tensile tests were conducted to validate the analytically derived
deformation paths. They concluded that such varying strain rate
paths can result in significant deformation time savings.

While Ren et al. (Ref 1) and Johnson et al. (Ref 6) focused their
investigations on uniaxial tensile tests, Ding et al. (Ref 7)
computed a gas pressure profile to form sheet into a long
rectangular box. The strain rate was controlled in the unsupported
part of the sheet using an equation that fits a variable strain rate path
based on Hart�s 1D linear stability criterion (Ref 2) and a
constitutive equation for Ti-6Al-4V. The simulation was con-
ducted using the numerical model developed by Ghosh and
Hamilton (Ref 8). Their results showed that the variable strain rate
control in the free forming region was able to reduce the forming
time by 13.4% with an increase of only 2.1% in the localized
thinning compared with forming under a constant strain rate of
0.001 1/s. In 1997, Ding et al. (Ref 9) developed a linear stability
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criterion for biaxial stretching and used it to compute a variable
strain rate path for Ti-6Al-4V. A commercial FE code was used to
predict the pressure profile from the computed strain rate path in
forming of a Ti-6Al-4V hemisphere at 900 �C.Yang et al. (Ref 10)
used a step-change variable pressure which involves steps of
isobaric forming with a non-constant strain rate within the
superplastic region for bulge forming of Al 7475 alloy at
505 �C. They claimed to shorten the forming times compared
with single-step constant pressure forming while achieving
satisfactory thickness profiles.

In 1999, Khraisheh and Zbib (Ref 11) published a procedure
for obtaining strain rate paths for gas pressure forming of
superplastic Pb-Sn sheets based on biaxial tension tests.
Constant strain rate bulge-forming experiments were con-
ducted, and the actual time to failure for each strain rate
(experiment) was recorded. The pressure profile was generated
by following the pressure profile for the fastest strain rate up to
0.7 of the actual time to failure, then bumping down to the
corresponding value of the pressure profile for the next fastest
strain rate, and following it up to 0.7 of the actual time to
failure, then bumping it down, and so on. Comley (Ref 12) used
a maximum stress/strain failure boundary curve drawn on a
series of experimentally obtained uniaxial tensile test constant
strain rate curves to generate a variable strain rate path. His
procedure was similar to that used by Khraisheh and Zbib (Ref
11); instead of using the latter’s biaxial tension test data, he
used the uniaxial tension data to generate a variable strain rate
path for forming of a fine-grained Ti-6Al-4V pan.

Nazzal et al. (Ref 13), in 2004, derived a variable strain rate path
based on the concept of Hart�s stability criterion (Ref 2, 3) and a
microstructure-based constitutive model for Ti-6Al-4V. The
commercial FE code ABAQUS� was used to simulate the
forming of a deep rectangular box and an aircraft blowout door.
The pressures required to form the parts using the variable strain
rate paths were obtained and compared to those obtained by
forming at two constant strain rates, one high and one low. Later,
Thuramalla et al. (Ref 14) andNazzal andKhraisheh (Ref 15) used
the same procedure to compute a designed strain rate path for
superplastic AA5083 alloy- and copper-based Coronze-638.

Nazzal and Khraisheh (Ref 16) proposed following the
uniaxial nonlinear wavelength analysis of Hutchinson and Neale
(Ref 17) as a basis for deriving the strain rate deformation paths in
high-temperature sheet forming. This is a 1D analogue of the
Marciniak and Kuczynski approach (Ref 18, 19). To test this
approach, FE simulations of Mg AZ31 sheet forming into a deep
rectangular boxwere conducted (Ref 16). Their numerical results
showed that the designed strain rate path based on Hart�s stability
criterion was more conservative than that based on the nonlinear
long wave analysis since, in the former, instability was predicted
at lower strain levels.Nazzal andKhraisheh (Ref 16)modified the
Hutchinson and Neale (Ref 17) analysis by means of a
phenomenological constitutive relation that accounts for grain
growth and cavitation. The resulting equationwas then solved for
a certain strain rate to yield a critical strain. Repeating the same
for the whole range of strain rates and plotting the pairs of strain
rates and the computed critical strains gave the strain rate
deformation path.

In the present article, we extend the bulge forming model
detailed in Jarrar et al. (Ref 20) to predict time-varying pressure
profiles computed from the nonlinear long wavelength stability
criterion for a 1D bar. Failure in the bulge-forming process usually
occurs through unmitigated thinning at the dome pole followed by
fracture along the rolling direction of the sheet. Results of FE

simulations forAA5083 sheet formed underQPF conditions based
on theGMR&Dbulge tester are presented. The variable strain rate
paths, from which are computed the pressure profiles, are derived
from a set of solutions to a non-linear differential equation for the
strain in that portion of the bar that is thinning. The solutions to the
differential equation are displayed as a set of curves for selected
values of an initial geometric non-uniformityg. These compare the
ratio of the strain in the region of the bar that undergoes
nonuniform thinning to that of the material undergoing uniform
thinning. The associated uniaxial strains and strain rates are then
expressed in terms of von Mises effective strains and strains rates
and pressure profiles are computed for hemispherical bulge-
forming AA5083 in QPF. An additional technique that leads to a
single variable strain rate path based on a thinning factor is also
presented for comparison with the nonlinear long wavelength
analysis results. This approach involves no pre-assumed geometric
inhomogeneity. The results of nonlinear long wavelength analysis
and thinning factor approaches to pressure profile prediction are
compared to those from the ABAQUS� algorithm and the
advantages and disadvantages of each are discussed in detail.

2. Material Constitutive Model

High-temperature (450 �C) AA5083 tensile data reported in
Krajewski and Montgomery (Ref 21) was used to fit the single-
term material model in Eq 1-3:

_�e ¼ K

dP
�r

1� fa

� �1=n

ðEq 1Þ

d ¼ dð0Þ þ c�e ðEq 2Þ

fa ¼ fað0Þexp w�eð Þ ðEq 3Þ

This model has been previously applied in FE simulations of
superplastic-forming processes of both Al and Mg alloy sheets
(Ref 13, 20, 22, 23). Note that �e and _�e denote the Von Mises
effective strain and strain rate, respectively; �r is the Von Mises
effective flow stress; n is a constant which is only equal to the
strain rate sensitivity, m, at the start of deformation ( �e ¼ 0); d is
the average grain size; d(0) is the initial grain size (�8.0 lm);
fa(0) and fa are the initial and current area fractions of voids,
respectively; w is the void growth parameter; P and K are func-
tions of the effective strain rate; and c is a material constant. To
account for the change in microstructure during deformation,
evolution equations for grain size d and area fractions of voids fa
are defined. The simple linear grain growth model in Eq 2 is
similar to that used by Caceres and Wilkinson (Ref 24). The cav-
itation evolution model described by the exponential relation in
Eq 3 is used, based on the assumption that cavitation is primarily
controlled by the plastic flow of the surrounding matrix (Ref 25–
27). While Eq 1 describes no specific creep mechanism, the
two-term model in Taleff et al. (Ref 28) accounts for two inde-
pendent creep mechanisms, viz., grain boundary sliding, and sol-
ute drag creep. However, the two-term model does not currently
account for hardening/softening.

The AA5083 tensile data, which were measured at strain
rates ranging from 0.0005 to 0.3 1/s, are shown in Fig. 1 as true
stress (MPa) vs. true strain. A yield point effect (or local
increase in the flow stress at small strains) appears at 0.01 1/s.
At the largest effective strain rates of 0.1 and 0.3 1/s, the
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material appears to soften beyond the yield point, although
necking probably occurred not long after the yield point in the
tensile tests.

By means of a fitting process detailed elsewhere (Ref 13, 22,
23), the parameters listed in Table 1 were computed for Eq 1-3.
Note that the values of d(0), c, fa(0), n and w were chosen based
on the literature as no experimental data on the microstructural
evolution in the material were available (Ref 29–32).

Figure 2 shows a plot of the single-term model in Eq 1-3 with
the parameters in Table 3.1 against the experimental data in Fig. 1.
The seemingly straight lines (each is actually a curve) represent the
fit results in stress-strain space to the experimental data.

The strain rate sensitivity (m) is defined as

m ¼ d log �rð Þ
d log _�e
� � ðEq 4Þ

The material model in Eq 1-3 leads to the m vs. _�e variation
as shown in Fig. 3. A high value of m denotes greater resis-

tance to localized thinning. At a given strain rate, m decreases
as deformation proceeds (i.e., as effective strain increases). In
addition, a decrease in the effective strain rate _�e leads to a
corresponding increase in m. Therefore, Fig. 3 suggests that
as deformation proceeds, a decrease in the _�e to compensate
for the decrease in m due to straining is preferable.

3. Finite Element Model

The FE model used in the present investigation is based on
the bulge-forming instrumentation detailed in Bradley (Ref 33):
this is shown in Fig. 4. The sheet is clamped along the die
flange, as shown in Fig. 4(a, b), and forming occurs at 450 �C
(neither the die nor the sheet is preheated in the simulations).
The die has an inner diameter of 100-mm, a flange of 150-mm
diameter, and a fillet radius of 5 mm. One-half of the die is
shown in section view in Fig. 4(c). The circular AA5083 sheet,
shown in Fig. 4(d), is of 114-mm diameter with an initial
thickness of 1.2 mm. The sheet was meshed using 3D
membrane elements [M3D4], whereas the die was meshed
using 3D rigid elements. The final sheet mesh used in all
simulations resulted from a series of careful mesh convergence
tests. The sheet nodes located along the sheet circumference
were fixed during the simulations to account for the restraint in
the experiments. All simulations were conducted using the
implicit solver in the commercial FE code ABAQUS� 6.6.1
(Ref 34). The creep response was defined in a user-material
subroutine containing the material model in Eq 1-3. Zero
friction was assumed at the die entry radius.

4. Variable Strain Rate Deformation Path

4.1 Background

Forming at a constant strain rate that provides the highest m
value produces the best obtainable forming quality or thickness
distribution. However, this method requires long forming times.
If the choice is made to sacrifice some of the quality to reduce

Fig. 1 True stress vs. true strain curves for the AA5083 alloy at
450 �C from tensile tests (Ref 21)

Table 1 Parameters resulting from the fit to Eq 1-3

Parameter Value

n 0.5
P �3� 0.43 ln ð _�eÞ
ln(K) �15.251� 0.2021 ln ð _�eÞ + 0.0346

ln2 ð _�eÞ
d(0) (lm) 8.0
c 2.5
fa(0) (%) 1.25
w 1.5

Fig. 2 Comparison of the material model, Eq 1-3, with fit parame-
ters/functions in Table 1 (straight lines denoted with ‘‘-Fit’’ in the
key) and the AA5083 450 �C tensile data (Ref 21)

Fig. 3 Strain rate sensitivity (m) vs. effective strain rate for se-
lected effective strains from the constitutive material model, Eq 1-3,
for AA5083 at 450 �C
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the forming time, then there is no fundamental physical reason
why hot gas pressure-forming processes must be conducted
under constant strain rate. An alternative approach involves
forming under a variable strain rate path such that unmitigated
thinning and rupture are avoided. Here, we examine two
theoretical approaches that result in variable strain rate
deformation paths from which gas pressure profiles can be
predicted. In the first, the nonlinear long wavelength stability
analysis is applied (Ref 16, 17). The second approach is based
on the thinning factor or the dome pole thickness divided by the
average dome thickness measured along a cross-sectional
contour cutting the dome into two equal halves through the
pole. The latter results in a single relationship between effective
strain rate, _�e, and effective strain, �e (unlike the nonlinear long
wavelength analysis approach that has as many such curves as
g-values). The aim of both approaches is to compute a variable
strain path that potentially leads to forming times that are less
than those from constant strain rate forming, while maintaining
as uniform a part thickness distribution as possible. .

4.2 Nonlinear Long Wavelength Stability Analysis

In this section, the tensile stability criterion due to Hutchinson
and Neale (Ref 17) is used to generate a variable strain rate
deformation path using the AA5083 material constitutive model,
Eq 1-3. In their analysis (Ref 17), Hutchinson and Neale were
motivated by the observation that a small amount of strain rate
dependence can result in a large amount of straining before
necking in bars. Consequently, they examined the deformation of a
long cylindrical solid bar subjected to a time-dependent load, F(t).
The bar is assumed to contain a pre-existing geometric nonuni-
formity at which thinning localization and rupture can occur given
the right conditions. The aim of the nonlinear long wavelength
analysis is to find combinations of uniaxial strain and strain rate
thatwill lead to rapid thinningand ruptureof thebar for an assumed
nonuniformity. Figure 5 shows a schematic of their model system.

Here, A(t) is the current cross-sectional area of the ‘‘local’’ section
(i.e., the section containing the inhomogeneity or deviation in the
cross-sectional geometry of the bar). The current cross-sectional
area of the uniform ‘‘perfect’’ section of the bar is denoted byA0(t).
From this point on, the subscript 0 will refer to the uniform section
of the bar as indicated in Fig. 5; any symbolwithout the subscript 0
refers to the local section of the bar following the nomenclature in
Fig. 5.Aconstant uniaxial strain rate, _e0, is assumed in the uniform
section of the bar. As deformation proceeds, the ratio e/e0 (i.e., of
the uniaxial strain in the local region to the uniaxial strain in the
uniform region) is computed and closely monitored. If this ratio
starts growing rapidly during deformation, then thinning increases
rapidly in the local area ultimately leading to rupture (the details of
rupture are not accounted for in the theoretical formulation or in
any of the ensuing FE simulations).

Derivation of the variable strain rate path begins by
rewriting the uniaxial version of Eq 1-3 for the uniform region
of the bar in terms of the uniaxial stress, r0, as follows:

r0 ¼ �K0d
nP0
0 _en0 1� fa0ð Þ ðEq 5Þ

where

n ¼ 0:5 ðEq 6Þ

P0 ¼ �ð3þ 0:43 ln _e0ð ÞÞ ðEq 7Þ

�K0 ¼
1

K0ð Þn
¼ e 0:0346ðlnð _e0ÞÞ2�ð15:251þ0:2021 lnð _e0ÞÞf g
h i�n

ðEq 8Þ

d0 ¼ d 0ð Þ þ ce0 ¼ 8:0þ 2:5e0 ðEq 9Þ

fa0 ¼ fa 0ð Þewe0 ¼ 0:0125e1:5e0 ðEq 10Þ

The same relations also apply in the local region of the bar
(with corresponding cross-sectional area A) in Fig. 5:

r ¼ �KdnP _en 1� fað Þ ðEq 11Þ

where

n ¼ 0:5 ðEq 12Þ

P ¼ � 3þ 0:43 ln _eð Þð Þ ðEq 13Þ

�K ¼ 1

Kð Þn ¼ e 0:0346ðlnð_eÞÞ2�ð15:251þ0:2021 lnð _eÞÞf g
h i�n

ðEq 14Þ

d ¼ d 0ð Þ þ ce ¼ 8:0þ 2:5e ðEq 15Þ

fa ¼ fa 0ð Þewe ¼ 0:0125e1:5e ðEq 16Þ

Note that the material constants d(0), fa(0), w, c, and n have
the same value in both regions (i.e., the uniform and local
areas in Fig. 5).

The so-called long wavelength approximation is invoked in
which the stress over each cross section is uniaxial and

Fig. 4 (a, b) Different views of the die and sheet meshed together,
(c) one half of the die mesh shown in section view, and (d) sheet
mesh alone

Fig. 5 Cylindrical bar under tension
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uniform, with applied force F. This allows us to write the flow
stresses in the local and uniform regions, r and r0, respectively,
as

r ¼ F

Að1� faÞ
ðEq 17Þ

r0 ¼
F

A0ð1� fa0Þ
ðEq 18Þ

Since F is the same throughout the entire bar, the following
equilibrium equation applies:

F ¼ Ar 1� fað Þ ¼ A0r0 1� fa0ð Þ ðEq 19Þ

Substituting for r and r0 from the material constitutive mod-
els, Eq 5 and 11, into Eq 19 gives

A�KdnP _en 1� fað Þ2¼ A0
�K0d

nP0
0 _en0 1� fa0ð Þ2 ðEq 20Þ

Before proceeding further with the derivation, relations
between the cross-sectional areas and the axial strains in the
two sections of the bar are required. Assuming incompress-
ibility, the uniaxial strains may be written as

e ¼ �ln Að1� faÞ
Að0Þð1� fað0ÞÞ

� �
ðEq 21Þ

e0 ¼ �ln
A0ð1� fa0Þ

A0ð0Þð1� fa0ð0ÞÞ

� �
ðEq 22Þ

where A(0) and A0(0) are the cross-sectional areas at the start
of plastic deformation in the local and uniform sections of
the bar, respectively. Equation 21 and 22 may be written in
terms of A and A0 as follows:

A ¼ Að0Þð1� fað0ÞÞ
1� fað Þ

� �
e�e ðEq 23Þ

A0 ¼
A0ð0Þð1� fa0ð0ÞÞ

1� fa0ð Þ

� �
e�e0 ðEq 24Þ

Substituting for A and A0 from Eq 23 and 24 into the equilib-
rium equation (20) gives

e�e �KdnP _en 1� fað Þ ¼ e�e0 �K0d
nP0
0 _en0 1� fa0ð Þ A0ð0Þð1� fa0ð0ÞÞ

Að0Þ 1� fað0Þð Þ

� �

ðEq 25Þ

The initial geometric nonuniformity, g, in the cross-sectional
area of the bar in Fig. 5 is defined by

g ¼ 1� Að0Þ
A0ð0Þ

ðEq 26Þ

Use of Eq 26 in the analysis is a significant point of depar-
ture from the Hart (Ref 2) tensile stability analysis since it
introduces nonlinearity into the stability analysis. Hence, an
initially imperfect bar is associated with g > 0 where
A 0ð Þ<A0 0ð Þ. Noting that fa(0) is assumed to have the same
value in both uniform and local regions, then using Eq 26,
the equilibrium equation (25) maybe re-written as

e�e �KdnP _en 1� fað Þ ¼ e�e0 �K0d
nP0
0 _en0 1� fa0ð Þ 1

1� gð Þ ðEq 27Þ

Raising both sides of Eq 27 to the power 1/n and substituting
for the numerical values of n, the grain growth parameters d,

d0, area fraction of cavities parameters fa; fa0 , and the mate-
rial state variables �K; �K0; P; P0, from Eq 5 to 16, gives the
following nonlinear differential equation:

_ee�2e
8:0þ 2:5e½ �� 3þ0:43 lnð _eÞf g

e 0:0346 lnð_eÞð Þ2�0:2021 lnð _eÞ�15:251f g

" #
1� 0:0125e1:5e

� �� 	2

¼ _e0e
�2e0 8:0þ 2:5e0½ �� 3þ0:43 ln _e0ð Þf g

e 0:0346ðln _e0ð ÞÞ2�0:2021 ln _e0ð Þ�15:251f g

" #

� ð1� 0:0125e1:5e0ð Þ
1� gð Þ

� �2

Recall that a constant strain rate _e0 is imposed in the uniform
region (see Fig. 5). Thus, the only unknown in Eq 28 (assum-
ing a value for g is supplied a priori) is the strain in the local
region, e = e(t). Equation 28 is a nonlinear, nonseparable or-
dinary differential equation of the form:

_e ¼ f ð _e; e; tÞ ðEq 29Þ

subject to the initial conditions:

e 0ð Þ ¼ 0 ðEq 30Þ

_e 0ð Þ ¼ 1� 10�7 1=s ðEq 31Þ

The initial condition for the local strain rate, _e, was set to the
small number in Eq 31 instead of zero due to terms with
lnð _eÞ in Eq 28.

Equation 28 was solved using the FE method-based com-
mercial software, Comsol Multiphysics� (Ref 35). While the
methodology contained therein is mainly used for solving
partial differential equations, the solution procedure for Eq 28
involved eliminating the spatial variation of the dependent
variables, which is obtained by specifying only one element in
the spatial computational domain. Neumann boundary condi-
tions and the direct linear system solver ‘‘UMFPACK’’ were
used. This solver is used for solving nonsymmetric sparse
linear systems, Ax = b, using the nonsymmetric, multi-frontal
method (Ref 36). The computations were performed for
assumed values of g. For each g, different prescribed constant
strain rates, _e0, in the uniform area of the bar were considered.

We consider the case of g = 0.025 in detail as an example.
Figure 6 shows a plot of the ratio of the strain in the local area
to the strain in the uniform area, e/e0, against the strain in the
uniform area, e0, for different prescribed strain rates, _e0 (see the
figure key), in the uniform area of the bar. For each _e0, e/e0
increases with increasing e0. The rate of this increase is
nonlinear as observed in the various curves of Fig. 6. Each
curve extends asymptotically to infinity at large e0; this
corresponds to a theoretical designation for unmitigated
thinning of the local area of the bar in Fig. 5 followed by
rupture. There is a critical strain in the uniform area, e0 critical, at
which e/e0 is sufficiently large as to signal the point of
instability onset. We consider this to be the maximum
obtainable strain in the uniform area. In this analysis, e0 critical

was chosen to correspond to a slope of 0.2 for all curves.
Although larger values could in fact be selected, the 0.2 value
represented a reasonable compromise in that it is far enough
away from the point where each curve adopts an infinite slope
(smaller, but more conservative values could also be chosen).
An increase of _e0 leads to a corresponding decrease of e0 critical.
Note that additional sets of curves similar to those in Fig. 6
were computed for g = 0.05, 0.01, 0.0075, 0.005, 0.0025, and
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0.001. Behavior similar to that in Fig. 6 was observed in each
case.

Figure 7(a) shows the ‘‘onset of instability’’ curves for all
values of g investigated, while Fig. 7(b) is a magnified view of
the curves corresponding to g = 0.025, and 0.05. At this point,
the following generalization is made: the uniaxial strains and
strain rates may be substituted by the von Mises effective
strains and strain rates. Hence, e0 is replaced by the effective
strain �e and _e0 is replaced with effective strain rate _�e in Fig. 7(a)
(and the distinction between uniform and local areas as denoted
in Fig. 5 is no longer relevant). Points on each curve, which are
denoted by various symbols (see the key in Fig. 7a) correspond
to combinations of _�e and �e that represent the limit of stable
deformation at the fastest possible rate of deformation accord-
ing to the nonlinear long wavelength analysis. Each point in the
g = 0.025 curve was taken directly from Fig. 6 in the
following manner. For example, �e ¼ e0 critical ¼ 0:0263

corresponds to _e0 ¼ 0:01s�1 (labeled ‘‘A’’ in Fig. 7b). This is
two-orders-of-magnitude smaller than �e ¼ e0 critical ¼ 0:2718
which corresponds to _e0 ¼ 0:001s�1 (labeled ‘‘B’’ in Fig. 7b).
Figure 7(a) results after additional pairs are added from curves
similar to those in Fig. 6 but for the remaining values of g. The
points are connected as a guide to the trends that are suggested
in the data. Each curve in Fig. 7(a) divides the stability space
into two regions. Points to the left of and below any given
curve fall in the region of stable deformation for the corre-
sponding value of g. Those points to the right of, and above
each curve, fall in the region of unstable deformation for the
corresponding g-value. Consider the g = 0.025 curve in
Fig. 7(b). In the context of forming a metal hemisphere from
a thin sheet, this curve suggests that small �e at the outset of
forming require large _�e-values. As the dome develops curvature
and begins to adopt a hemispherical shape with increasing �e,
corresponding values of _�e decrease according to the g = 0.025
curve. We note that any one of the curves in Fig. 7(a) is a
potential candidate for the variable strain rate deformation path
for thin sheet deformation in a non-uniaxial stress state (for
biaxial or plane strain deformation). However, the curve
corresponding to g = 0.05 suggests that instability sets in just
after straining begins.

In biaxial bulge forming, the strain rate is highest at the
dome pole, and it stands to reason that a variable strain rate path
should be computed based on the need to control deformation
of the dome pole during forming. We note that the nonlinear
long wavelength analysis has one significant drawback: choice
of an appropriate value of g cannot be readily determined in
high-temperature biaxial bulge experiments (for example).

4.3 Variable Strain Rate Path from Thinning Factor Analysis

In Jarrar et al. (Ref 20), two sets of boundary conditions for
gas pressure were applied in FE simulations of AA5083 high-
temperature hemispherical bulge forming under QPF condi-
tions. In the first set, the gas pressure followed a linear ramp to
a constant value that was maintained for the duration of the
simulation. In the second set of FE simulations, the gas pressure
profile was computed (rather than prescribed at the outset of the

Fig. 6 Solutions to Eq 28 assuming g = 0.025 for selected _e0 in
the uniform area (see Fig. 5). Note that e0 is the strain in the uni-
form area, and e/e0 is the ratio of strain in local area to the strain in
uniform area. The ‘‘9’’ symbols denote the points at which the
slopes of the associated curves reach a value of 0.2

Fig. 7 (a) Onset of instability curves, obtained using the nonlinear long wavelength analysis criterion (Ref 17) for AA5083 at 450 �C, for dif-
ferent (selected) values of g. (b) Magnified view of the curves corresponding to g = 0.025, 0.05
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simulation) using an algorithm internal to ABAQUS� 6.6.1
(Ref 37). This algorithm attempts to maintain a constant strain
rate at the dome pole during forming based on a user-chosen
target effective strain rate. However, some fluctuations about
the target strain rate are inevitable since the algorithm adjusts
the pressure based on a set of specified ranges for the ratio
of the maximum equivalent strain rate in the sheet at the current
time step to the target effective strain rate. The pole height,
thickness, and strain rate evolution profiles were computed for
both sets of boundary conditions.

Jarrar et al. (Ref 20) also defined a thinning factor, b, as the
dome pole thickness divided by the average dome thickness
measured along a cross sectional contour cutting the dome into
two equal halves through the pole. A perfect uniform thickness
distribution corresponds to b = 1. The lower the thinning
factor, the greater is the deviation in thickness distribution
along the bulge profile. Hence, b was used as a quantitative
measure of the uniformity of the dome thickness distribution at
the end of the QPF FE simulation (i.e., when the sheet was
formed into a hemispherical dome). Figure 8(a) shows the
thinning factor b as a function of pole height, h, for six FE
bulge simulation runs, each with a different constant effective
target strain rate, _�e, specified at the dome pole. Thirteen _�e
values were considered in this study, with the highest being
0.04 1/s; however, to maintain clarity, only six curves are
shown in Fig. 8(a) with corresponding _�e values listed in the
key. Pole height was chosen as the abscissa value since the
computed curves would not line up if in fact time were used;
this would render the ensuing analysis much more challenging.
The ABAQUS� pressure control algorithm detailed in Jarrar
et al. (Ref 20) was used to generate all of the curves. For a
certain pole height, the smaller the value of _�e, the larger is the
value of b suggesting greater thickness uniformity. Notice,
however, that the slope of each curve rapidly decreases as the
dome height increases. The curves begin to significantly deviate
from one another beyond a 20-mm pole height. The corre-
sponding rapid decrease in b is an indication of a rapid increase
in localized thinning. Figure 8(b) shows the effective strain, �e,
at the dome pole as a function of pole height, h, computed with
the ABAQUS� pressure control algorithm. Here, the curves
begin to deviate from one another for �e � 0:4. This agrees with
a key observation made in Jarrar et al. (Ref 20) in that the
U-shaped _�e evolution curves predicted for different constant
pressure-forming profiles all achieving a minimum value for

�e � 0:4. The rapid increase in _�e that followed those minima is
due to increased localized thinning at the pole.

Calculation of a variable strain rate path based on the
variations of b with h in Fig. 8(a) first involves the selection of
a series of ( _�e, �e) pairs determined by a relative thinning factor,
Db; this factor is relative to a reference strain rate that leads to
an ‘‘acceptable’’ forming result and another value of _�e. We
choose Db to be approximately two orders-of-magnitude
smaller than b. As an example, we take _�e ¼ 0:001 1/s as our
reference strain rate since Jarrar et al. (Ref 20) demonstrated
that this produces an AA5083 hemispherical dome in 1,074 s
with b = 0.62 using the ABAQUS� pressure control algo-
rithm. We also assume that rupture will not occur at the end of
forming (i.e., a 50-mm dome displacement) at _�e ¼ 0:001 1/s.
The first point of the variable effective strain rate path
corresponds to that value of h on the highest strain rate curve
(i.e., 0.03 1/s) at which the Db between the 0.03 and 0.001 1/s
curves equals a user-chosen value. In the present case, we
choose Db = 0.005 (for reasons given below). The second
point in the variable strain rate profile occurs on the 0.01 1/s
curve in Fig. 8(a) when Db = 0.005 1/s relative to the 0.001
1/s curve. The process is continued in this fashion for all _�e in
Fig. 8(a) above the reference strain rate of 0.001 1/s. The
outcome of this procedure is a set of ( _�e; h) pairs for each _�e
above 0.001 1/s. Finally, the chosen _�e values are plotted against
the �e corresponding to the h-values in each pair following
Fig. 8(b). Note that the resulting variable effective strain rate
path would finally merge with the 0.001 1/s effective strain rate
profile. Hence, imposition of Db allows one to ‘‘manually’’
determine a variable strain rate path so as to avoid excessive
thinning of the dome pole, or, alternatively, to keep b within an
acceptable small range during bulge forming.

Some comments on our choice of Db = 0.005 1/s are
warranted. While this choice is largely at the discretion of the
user, it is subject to some important considerations. The smaller
the value of Db, the more curves that are required in Fig. 8(a, b).
This means that one would need more constant strain rate FE
simulation runs using the ABAQUS� pressure control
algorithm. Assuming that there are cases where this additional
effort may be warranted, a smaller value of Db would in fact
result in more data points in the computed variable strain rate
path.

The variable effective strain rate path generated by the
thinning factor analysis for the AA5083 bulge forming at

Fig. 8 Constant effective strain rate FE simulation runs results: (a) thinning factor vs. pole height (mm), and (b) effective strain at pole vs. pole
height
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450 �C is shown in Fig. 9. Also shown is the g = 0.025 curve
from the nonlinear long wavelength analysis. Note that the
curves were terminated at effective strain rates corresponding to
_�e ¼ 0:001 1/s. The most rapidly varying portion of the path sits
below �e ¼ 0:4. The curve corresponding to g = 0.025 from the
nonlinear long wavelength analysis is shown to be qualitatively
similar.

5. Results and Discussion

Figure 10 compares the evolution of the thinning factor, b,
with time (s) in AA5083 bulge-forming simulations which were
terminated when the dome height reached 50 mm. Results from
the three approaches to computing a variable strain rate path
detailed above are compared. The blue symbols represent the
FE-predicted b-values for selected constant (target) _�e values
from the ABAQUSTM algorithm. These _�e values are listed in
the key on the right side of the plot. Interestingly, the blue data
points tend to follow a single nonlinear profile. The single red
triangle denotes the result from the thinning factor analysis
which is a single (b, t) pair. This is close to the _�e ¼ 0:0012 1/s
value from the ABAQUS� algorithm. It is also close to the
point corresponding to g = 0.025 from the nonlinear long
wavelength analysis suggesting the proximity of their b-values.
Notice that as is the case for the variable strain rate path
generated by the thinning factor analysis, those generated by
the nonlinear long wavelength analysis were all terminated at a
cut-off strain rate value of 0.001 1/s. The green symbols from
the nonlinear long wavelength analysis suggest that b increases
with increasing g in a nearly linear fashion.

It is tempting to conclude from Fig. 10 that the nonlinear long
wavelength analysis stands to offer little benefit over and above the
ABAQUS� and thinning factor analyses.However, it is important
to consider key advantages anddisadvantages associatedwith each
approach to computing a variable effective strain rate path.Clearly,
the positions of the blue symbols from the ABAQUS� algorithm
for constant strain rate forming suggest faster forming with

comparable thinning (for the most part) relative to data from the
nonlinear long wavelength analysis. In addition, the variable
effective strain rate curve from the thinning factor analysis (see
Fig. 9) required far less effort than that required of the nonlinear
long wavelength analysis. However, unlike the nonlinear long
wavelength analysis, there is no theoretical mechanism built-into
the ABAQUS� approach that attempts to avoid unmitigated
thinningand ruptureby varying the strain ratepath followedduring
the course of forming. The thinning factor approach is clearly
limited in that it provides only one variable effective strain rate
curve, whereas there are an infinite number of possibilitieswith the
nonlinear long wavelength analysis. Although it is not shown in
Fig. 10, a green symbol for g = 0.05 would in fact sit above the
blue ‘‘9’’ for _�e ¼ 0:001 1/s in the constant strain rate formulation.

Clearly, the price that one must pay to avoid unmitigated
thinning and rupture (in theory) by following the nonlinear long
wavelength analysis is slower forming with thinning factors
that are comparable to those from the ABAQUS� approach.
Since in the nonlinear long wavelength analysis, the
_�e ¼ 0:001 1/s, corresponding to the blue ‘‘9’’ in Fig. 10, was
chosen as the reference or cut-off effective strain rate, our aim
is to reduce the forming time while keeping a thinning
distribution comparable to that associated with _�e ¼ 0:001 1/s.
Figure 10 shows that the upward pointing green triangle
(nonlinear long wavelength analysis with g = 0.025), the
upward pointing red triangle (thinning factor analysis), and the
left pointing blue triangle (ABAQUS� algorithm with a
_�e ¼ 0:0012) are worth further investigation.

Figure 11 shows pressure profiles computed from the
nonlinear long wavelength analysis and assuming a constant
target effective strain rate. In all cases, the ABAQUS� internal
pressure control algorithm was used. The constant target strain

Fig. 9 Variable effective strain rate forming paths for bulge form-
ing of AA5083 at 450 �C. The curve containing open squares was
computed from the nonlinear long wavelength analysis with
g = 0.025, and the curve containing the filled stars was computed
from the thinning factor approach

Fig. 10 Thinning factor, b, for the fully formed dome (i.e., when
the pole height reached 50.0 mm) as a function of forming time (s)
from the FE simulations assuming selected values at the dome pole
and candidate-variable effective strain rate paths from the nonlinear
long wavelength analysis. The red triangle corresponds to the (b,
time) pair acquired from the thinning factor analysis in ‘‘Variable
Strain Rate Path from Thinning Factor Analysis’’ section (Color
figure online)
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rates were substituted with the variable strain rate path from the
nonlinear long wavelength analysis with g = 0.025. As men-
tioned above, additional _�e values were generated via interpo-
lation between the data points in the curve in Fig. 9. We do not
show results from the thinning factor analysis since these are
comparable to those from the g = 0.025 value from the
nonlinear long wavelength analysis. Three target strain rates are
investigated, namely, 0.001 1/s (Fig. 11a), 0.0012 1/s
(Fig. 11b), and 0.01 1/s (Fig. 11c). Under constant effective
strain rate forming, the computed pressure follows a nearly
linear ramp (with small ‘‘pauses’’ at specific pressures due to
the step-wise nature of the ABAQUS� pressure control
algorithm), to a peak pressure value. This peak value persists
for a period of time after which the pressure is decreased in a
step-wise fashion. The pressure computed with the nonlinear
long wavelength analysis instantaneously jumps to the peak
value of 0.39 MPa which is held fixed for 60 s or so, after
which point it decreases to a smaller value that is likewise held
fixed for a protracted time period. The greatest differences in
the shapes of the pressure profiles occur during the initial
pressure-loading stage. Beyond this point, the pressure profiles
from both approaches are qualitatively quite similar, although
the associated pressure values can differ. The nonlinear long
wavelength analysis tends to result in much more rapid ramping
of the pressure than the constant target strain rate approach. We
note that no experimental data are currently available from
bulge simulations using the pressure profiles suggested in

Fig. 11. This will require suitable gas pressure control hardware
in experimental bulge forming tests.

Another issue that remains to be effectively explored is the
extent to which material hardening/softening that is greater than
that observed in AA5083 high-temperature tensile tests will
contribute to the relationships between the different approaches,
especially in the earliest stages of forming. Current efforts are
focused on simulating bulge forming of Mg AZ31 with the
different approaches to variable effective strain rate path prediction.

6. Conclusions

The major conclusions from this study are as follows:

1. The nonlinear long wavelength analysis and ABA-
QUS� FE approaches predict gas pressure profiles that
can be readily evaluated in experimental bulge forming
to compare with existing profiles in which the pressure
is linearly ramped to a constant value.

2. While both approaches have advantages and disadvan-
tages, the nonlinear long wavelength analysis represents
a theoretical framework in which unmitigated thinning
and rupture can be avoided.

3. Comparing results from the variable strain rate path
approach with g = 0.025 in the nonlinear wavelength

Fig. 11 Comparison between the computed gas pressure profiles for effective strain rates at the dome pole for: (a) 0.001 1/s (blue),(b)
0.0012 1/s (green), (c) 0.01 1/s (black), with that obtained using the designed variable effective strain rate path (g = 0.025) (red)
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analysis, to that from forming with a constant effective
strain rate of 0.001 1/s, shows that variable strain rate
forming reduced the forming time by 13.2% with a
decrease of only 1.67% in the minimum thickness at the
pole.

4. Previous studies that considered such variable strain rate
paths only compared results with one ‘‘optimum’’ strain
rate path. This is in contrast to the present study. In
order to completely evaluate the benefit of a predicted
pressure profile, the forming time and thickness distribu-
tion must be compared with those resulting from form-
ing under different strain rates, as depicted in Fig. 10 in
this paper.

5. The pressure profile computed from the nonlinear long
wavelength analysis involves an instantaneous ramp to
a peak pressure, while that from ABAQUS� is more
gradual. At longer forming times, profiles from both ap-
proaches are qualitatively similar.

6. In the early stages of gas pressure forming of produc-
tion parts, there is minimal contact with the die surface.
Thus, a relatively high starting pressure, as predicted by
the variable strain rate path approach here, provides a
reasonable substitute for a linearly ramped starting pres-
sure which is generated by the ‘‘optimum’’ constant
strain rate forming approach.

7. The variable strain rate path generates a pressure profile
that consists of relatively long isobaric forming steps.
These are easier to apply in production-forming pro-
cesses than the small pauses or steps required by the
pressure profiles generated by the constant strain rate
forming from ABAQUS�.

8. A main disadvantage of the nonlinear long wavelength
analysis is that the value of the geometric nonuniformity
in cross-sectional area, g, of the model bar on which
the instability analysis is based, is not known a priori.

9. A reasonable choice for g that leads to the greatest
value of b (the dome pole thickness divided by the aver-
age dome thickness measured along a cross-sectional
contour cutting the dome into two equal halves through
the pole) without rupture can be inferred from an ancil-
lary analysis of b as function of dome pole height
(requiring a separate set of FE calculations).

10. A main disadvantage of the ABAQUS� constant strain
rate approach to pressure profile prediction is the ab-
sence of any provision for avoiding unmitigated thin-
ning and rupture.

11. A new numerical approach, the thinning factor control,
was introduced in the present study. This method builds
on FE simulation results, namely, the thinning factor
evolution during deformation for different constant
strain rates, to generate a designed variable effective
strain rate path for fastest forming while maintaining an
acceptable thickness distribution. The application of the
procedure outlined in this work to other superplastic
materials, with a higher m-value, is expected to provide
even more favorable results.

12. While the stability analysis is based on a uniaxial crite-
rion, the present approach to variable strain rate gas
pressure forming can be readily extended to a two-
dimensional criterion. Results from such a model can be
compared to those of the present study to more thor-
oughly probe the advantages and disadvantages of the
uniaxial criterion.

Acknowledgment

We would like to acknowledge the financial support of General
Motors Company through a grant to the University of Kentucky.

References

1. B. Ren, H. Hamilton, and B. Ash, An Approach to Rapid SPF of an
Al-Li-Cu-Zr Alloy, 5th International Aluminum-Lithium Conference,
E.A. Strarke and T.H. Sanders, Jr., Ed., (Williamsburg, VA), The
Metallurgical Society, 1989

2. E.W. Hart, Theory of the Tensile Test, Acta Metall., 1967, 15, p 351–
355

3. F.A. Nicholas, Plastic Instabilities and Uniaxial Tensile Ductilities,
Acta Metall., 1980, 28, p 663–673

4. C.H. Caceres and D.S. Wilkinson, Large Strain Behavior of a
Superplastic Copper Alloy I. Deformation, Acta Metall., 1984, 32(3),
p 415–422

5. B.A. Ash and C.H. Hamilton, Strain and Strain-Rate Hardening
Characteristics of a Superplastic Al-Li-Cu-Zr Alloy, Scr. Metall., 1982,
22, p 277–282

6. C.H. Johnson, C.H. Hamilton, H.M. Zbib, and S.K. Richter, Designing
Optimized Deformation Paths for Superplastic Ti-6Al-4V, Advances in
Superplastic Forming, N. Chandra, H. Garmestani, and R.E. Goforth,
Ed., The Mineral, Metals & Materials Society, Warrendale, PA, 1993,
p 3–15

7. X.D. Ding, H.M. Zbib, C.H. Hamilton, and A.E. Bayoumi, On the
Optimization of Superplastic Blow-Forming Processes, J. Mater. Eng.
Perform., 1995, 4(4), p 474–485

8. A.K. Ghosh and C.H. Hamilton, Superplastic Forming of a Long
Rectangular Box Section—Analysis and Experiment, Process Model-
ing; Fundamentals and Applications to Metals, Proceedings of
American Society for Metals, Process Modeling Sessions, Materials
and Process, 1980, p 303–331

9. X.D.Ding,H.M.Zbib,C.H.Hamilton, andA.E.Bayoumi,On theStability
of Biaxial Stretching with Application to the Optimization of Superplastic
Blow-Forming, J. Eng. Mater. Technol., 1997, 119, p 26–31

10. C.F. Yang, L.H. Chiu, and S.C. Lee, Superplastic Forming of 7475 Al
Alloy by Variable-Pressure Blowing, Scr. Mater., 1996, 34(10),
p 1555–1560

11. M.K. Khraisheh and H.M. Zbib, Optimum Forming Loading Paths for
Pb-Sn Superplastic Sheet Materials, J. Eng. Mater. Technol., 1999, 121,
p 341–345

12. P. Comley, Multi-Rate Superplastic Forming of Fine Grain Ti-6Al-4V
Titanium Alloy, J. Mater. Eng. Perform., 2007, 16(2), p 150–154

13. M.N. Nazzal, M.K. Khraisheh, and B. Darras, Finite Element Modeling
and Optimization of Superplastic Forming Using Variable Strain Rate
Approach, J. Mater. Eng. Perform., 2004, 13(6), p 691–699

14. N.V. Thuramalla, M.A. Nazzal, and M.K. Khraisheh, Variable Strain
Rate Forming Technique to Optimize Superplastic Forming of AA5083
Using Multiscale Stability Analysis, Int. J. Form. Process., 2005, 8(1),
p 1–21

15. M.A. Nazzal and M.K. Khraisheh, The Effects of Stress State and
Cavitation on Deformation Stability During Superplastic Forming,
J. Mater. Eng. Perform., 2007, 16(2), p 200–207

16. M.A. Nazzal and M.K. Khraisheh, On the Stability of Superplastic
Deformation Using Nonlinear Wavelength Analysis, Key Eng. Mater.,
2007, 344, p 47–53

17. J.W. Hutchinson and K.W. Neale, Influence of Strain-Rate Sensitivity
on Necking Under Uniaxial Tension, Acta Metall., 1977, 25, p 839–
846

18. Z. Marciniak, K. Kuczynski, and T. Pokora, Influence of the Plastic
Properties of a Material on the Forming Limit Diagram for Sheet Metal
in Tension, Int. J. Mech. Sci., 1973, 15, p 789–805

19. Z. Marciniak and K. Kuczynski, Limit Strains in the Processes of
Stretch-Forming Sheet-Metal, Int. J. Mech. Sci., 1967, 9, p 609–620

20. F.S. Jarrar, F.K. Abu-Fahra, L.G. Hector, Jr., and M.K. Khraisheh,
Simulation of High Temperature AA5083 Bulge Forming with
Hardening/Softening Material Model, J. Mater. Eng. Perform., 2008,
18, p 863–870

21. P.E. Krajewski and G.P. Montgomery, Mechanical Behavior and
Modeling of AA5083 at 450�C, Advances in Superplasticity and

2272—Volume 21(11) November 2012 Journal of Materials Engineering and Performance



Superplastic Forming, E.M. Taleff, P.A. Friedman, P.E. Krajewski,
R.S. Mishra, and J.G. Schroth, Ed., (Charlotte, North Carolina, USA),
The Minerals, Metals & Materials Society (TMS), 2004, p 341–350

22. M.K. Khraisheh and F.K. Abu-Farha, Microstructure-Based Modeling
of Anisotropic Superplastic Deformation, Trans. NAMRI/SME, 2003,
31, p 41–47

23. F.K. Abu-Farha and M.K. Khraisheh, Analysis of Superplastic
Deformation of AZ31 Magnesium Alloy, J. Adv. Eng. Mater., 2007,
9(9), p 777–783

24. C.H. Caceres and D.S. Wilkinson, Large Strain Behavior of a
Superplastic Copper Alloy. Deformation, Acta Metall., 1984, 32,
p 415–422

25. M.J. Stowell, Cavity Growth and Failure in Superplastic Alloys, Metal
Sci., 1983, 17, p 92–98

26. C.L. Chen and M.J. Tan, Cavity Growth and Filament Formation of
Superplastically Deformed Al 7475 Alloy, Mater. Sci. Eng. A, 2001,
298, p 235–244

27. Y. Chino and H. Iwasaki, Cavity Growth Rate in Superplastic 5083 Al
and AZ31 Mg Alloys, J. Mater. Res., 2004, 19(11), p 3382–3388

28. E. Taleff, L.G. Hector, Jr., J.R. Bradley, R. Verma, and P.E. Krajewski,
The Effect of Stress State on High Temperature Deformation of Fine-
Grained AA5083 Sheet, Acta Mater., 2009, 57, p 2812–2822

29. F. Li, D.H. Bae, and A.K. Ghosh, Grain Elongation and Anisotropic
Grain Growth During Superplastic Deformation in an Al-Mg-Mn-Cu
Alloy, Acta Mater., 1997, 45(9), p 3887–3895

30. M.A. Khaleel, M.T. Smith, and A.L. Lund, Cavitation During
Multiaxial Deformation of Superplastic Forming, Mater. Sci. Forum,
1997, 243–245, p 155–160

31. E. Tanaka, S. Murakami, and H. Ishikawa, Constitutive Modeling of
Superplasticity Taking Account of Grain and Cavity Growth, Mater.
Sci. Forum, 1997, 233–234, p 21–28

32. H. Iwasaki, T. Mori, T. Tagata, M. Masatu, and K. Higashi, Cavitation in
Superplastic Al-Mg Alloy,Mater. Sci. Forum, 1997, 233–234, p 81–88

33. J.R. Bradley, Bulge Testing of Superplastic AA5083 Aluminum Sheet,
Advances in Superplasticity and Superplastic Forming, E.M. Taleff,
P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, Ed.,
(Charlotte, North Carolina, USA) the Minerals, Metals & Materials
Society (TMS), 2004, p 109–118

34. ABAQUS�, www.simulia.com. Accessed Mar 2009
35. COMSOL MultiPhysics�, http://www.comsol.com. Accessed Mar 2009
36. COMSOL MultiPhysics�, Reference Guide, Version October 2007

Comsol 3.4, 2007, p 508
37. ABAQUS�, Analysis User�s Manual, vol. 3, Version 6.5, 2004,

p 11.2.4–11.2.10

Journal of Materials Engineering and Performance Volume 21(11) November 2012—2273

http://www.simulia.com
http://www.comsol.com

	Gas Pressure Profile Prediction from Variable Strain Rate Deformation Paths in AA5083 Bulge Forming
	Abstract
	Introduction
	Material Constitutive Model
	Finite Element Model
	Variable Strain Rate Deformation Path
	Background
	Nonlinear Long Wavelength Stability Analysis
	Variable Strain Rate Path from Thinning Factor Analysis

	Results and Discussion
	Conclusions
	Acknowledgment
	References


